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Without knowing the initial state of the system, send a sequence
of instructions to move to State 1.
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A Small Finite Geometry

In finite geometry we enjoy incidence structures in which any two
lines meet in at most one point and any two points are joined by at
most one line.

If we insist on “exactly one point” and “exactly one line”, and
avoid degenerates, we are studying finite projective planes.
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The Fano plane

1 2 4
2 3 5
3 4 6
4 5 0
5 6 1
6 0 2
0 1 3
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The Fano Plane

The Fano plane is the smallest finite projective
plane: its points are the 1-dimensional subspaces
of F3

2 and its lines are the 2-dimensional
subspaces. Each line contains three points and
any two points are joined by a unique line.

The Fano plane can also be constructed from the quadratic
residues D = {1, 2, 4} in Z7 by viewing lines (or “blocks”) as all
possible cyclic shifts x +D ⊆ Z7 for x ∈ Z7.
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Biplanes?

By the same token, we can obtain a design from the quadratic
residues modulo 11; but here any two distinct points lie in two
common blocks and any two blocks have exactly two points in
common.

Some people call these biplanes it is very frustrating that we know
only 17 non-trivial examples.
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Block Designs

More generally, a 2-(n, k , µ) design is a collection B of k-element
subsets of [n] = {1, . . . , n} such that any two points x , y ∈ [n]
occur together in exactly µ blocks.

These have been of interest to statisticians and are known as
“balanced incomplete block designs”.
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A 3-Design

The codewords of the extended binary Hamming code

C = rowsp


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1


give us a design

D = {4567, 2367, 2345, 1357, 1346, 1245, 1247,

1238, 1458, 1678, 2468, 2578, 3678, 3568}

in which every triple appears exactly once!
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t-Designs

In 1959, Haim Hanani defined t-designs.

A t-(n, k, µ) design is a collection D of k-element subsets of
[n] = {1, . . . , n} having the property that every t-element subset
T ⊂ [n] is contained in exactly µ blocks from D.

Now statisticians fall asleep.

But finite group theorists get excited.
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Can we use groups?

Let G be any t-transitive (or t-homogeneous) permutation group
on [n]. For k > t, let D be any orbit of G on k-subsets. Then D is
a t-(n, k , µ) design.

So if there exist t-transitive groups for all t, then there exist
t-designs for all t.
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5-Designs from Beautiful Groups

But the CLASSIFICATION of finite simple groups tells us that,
apart from the symmetric and alternating groups, there are no
t-transitive groups for t > 5.

For t = 5, two Mathieu groups are t-transitive, but that’s all we
get; these give us 5-(24, 8, 1) and 5-(12, 6, 1) designs.
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Steiner Systems

A design with µ = 1 is as small as possible; these are called Steiner
systems.

Until recently, no non-trivial Steiner systems with t > 5 were
known and, for t = 5, the only known examples had k = 6 and
n ∈ {12, 24, 48, 72, 84, 108, 132}.
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They exist! They exist!

Today, we require D contains no repeated blocks.

In 1987, Luc Teirlinck proved that non-trivial t-designs exist for all
values of t. But these designs have astronomically large µ values.

In the 1990s, various people used basis reduction (LLL) to piece
together orbits of nice groups (PSL2(q) acting on the projective
line seemed to be fruitful) and obtain t-designs with t = 6, 7, 8, 9
and µ not “too bad” (2-,3-,4-digit numbers).
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Keevash’s Theorem

In January 2014, Peter Keevash (now at Oxford) proved that
Steiner systems exist for all values of t. (In fact, once you take
divisibility into account, only finitely many n are bad for a given t
and k). This answers a question of Plücker from 1835.
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Incidence Matrices

We want to look at these objects from a linear-algebraic viewpoint.

Our matrices are functions on Cartesian products:

W :

(
[n]

k

)
×
(

[n]

t

)
→ C
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Incidence Matrix of k-Sets versus t-Sets

The incidence matrix (“Wilson matrix”, “Riemann matrix”)

Wk,t = W
(n)
k,t has rows indexed by

([n]
k

)
and columns indexed by([n]

t

)
and entries

(Wk,t)a,b =

{
1 b ⊆ a;

0 otherwise.
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Incidence Matrices

Some properties of the incidence matrices:

Wk,tWt,s =

(
k − s

t − s

)
Wk,s

so colsp Wk,t contains colsp Wk,t−1.

W
(n)
k,t =

[
W

(n−1)
k−1,t−1 W

(n−1)
k−1,t

0 W
(n−1)
k,t

]

so, for t ≤ k ≤ n/2, Wk,t has full column rank.
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The Johnson Association Scheme

Now fix n. We consider the algebra generated by the matrices

Ct = Wk,tW
>
k,t

We have

CrCs =

min(r ,s)∑
t=0

(
k − t

r − t

)(
k − t

s − t

)(
v − r − s

v − k − t

)
Ct

so that spanC{C0, . . . ,Ct} is closed under matrix multiplication for
0 ≤ t ≤ k .
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The Johnson Graph

Consider the graph J(n, k) with vertex set
([n]
k

)
and adjacency rule

a b
|a ∩ b| = k − 1

This graph J(n, k) is called the Johnson graph. It’s eigenvalues are
(k − j)(n − k − j)− j for 0 ≤ j ≤ k.

I should note that these graphs play a special role in Babai’s new
quasipolynomial time algorithm for graph isomorphism.
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Example: J(5, 2)

For 2-subsets of [5] = {1, 2, 3, 4, 5} we get the Johnson graph and
its familiar complement:
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The Johnson Scheme

Two vertices a and b are at distance i in the Johnson graph
J(n, k) if

a b
|a ∩ b| = k − i

Denote the adjacency matrix of this graph by Ai .
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Bose-Mesner Algebra

One easily checks that

Ct =
t∑

i=0

(
i

t

)
Ak−i

So the algebra A generated by C0, . . . ,Ck is also closed under
entrywise (Schur) multiplication.

Also, I ∈ A and J ∈ A where J =
∑

i Ai is the all-ones matrix.

A transpose-closed vector space of matrices closed under both
ordinary and Schur multiplication and containing the identities for
both is called a Bose-Mesner algebra.
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Bose-Mesner Algebra

A transpose-closed vector space of matrices closed under both
ordinary and Schur multiplication and containing the identities for
both is called a Bose-Mesner algebra.

These are equivalent to association schemes (Bose/Mesner, 1959).
Here’s a definition in the symmetric case:

We have a finite set X together with a partition R = {R0, . . . ,Rd}
of X × X into symmetric relations satisfying

I R0 is the identity relation on X

I there exist intersection numbers ph
ij such that, whenever

(a, b) ∈ Rh,

# {c ∈ X | (a, c) ∈ Ri , (c, b) ∈ Rj} = ph
ij
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Bases for the Bose-Mesner Algebra

In general, we let Ai denote the adjacency matrix of the graph
(X ,Ri ). Then

AiAj =
d∑

h=0

ph
ijAh ,

A = spanR{A0, . . . ,Ad}

is closed under both ordinary and Schur multiplication and
contains both I and J.

So A admits a basis of mutually orthogonal idempotents
{E0, . . . ,Ed}

EiEj = δi ,jEi

with E0 + E1 + · · ·+ Ed = I . Without loss, E0 = 1
|X |J.
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Three Bases

In the case of the Johnson scheme, the algebra A has a useful third
basis {Ct}kt=0.

Ct =
t∑

i=0

(
i

t

)
Ak−i , Ai =

k∑
j=0

Hi (j)Ej , Ej =

j∑
t=0

%j(t)Ct

where

Hi (j) =
i∑

`=0

(−1)`
(

j

`

)(
k − j

i − `

)(
n − k − j

i − `

)
is the dual Hahn polynomial.
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Designs as 01-Vectors

Now let D ⊆
([n]
k

)
be encoded as a 01-vector of length, x say,

(n
k

)
.

Then D is a t-design

I if and only if

x>Wk,t = µ1 for some constant µ

I if and only if x>Wk,j is a constant vector for 0 ≤ j ≤ t

I if and only if x>Cj is a constant vector for 0 ≤ j ≤ t

I if and only if x>Ej = 0 for 0 < j ≤ t.

This leads us to a powerful linear programming bound for designs
(and codes).
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Posets

For any subset S ⊆ [n] of size s ≤ k , we identify S with the
01-vector which is the corresponding column of Wk,s . The map

S 7→ |S |

from the Boolean lattice to the chain captures the decomposition
of colsp Wk,t into eigenspaces

V0 + V1 + · · ·+ Vt

for the Johnson graph
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Posets

For n = 3, k = 2 (ignore top element {x , y , z}), we have an
order-preserving map

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

V2

V1

V0
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General Situation
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The Association Scheme of Sn

From a matrix theory viewpoint, this is just the center of the group
algebra, in the right regular representation.

I An association scheme is a highly regular edge decomposition
of the complete graph

I Our graphs will have one vertex for each σ ∈ Sn

I We have one graph for each conjugacy class Cλ
I σ ∼ τ in graph Gλ iff σ−1τ ∈ Cλ
I the vector space spanned by these p(n) matrices is closed

under both ordinary and entrywise multiplication
(Bose-Mesner algebra)

Recall

p(n) = [xn]
∞∏
k=1

1

1− xk

William J. Martin A Tale of Two Design Theories



Johnson Scheme
Symmetric Group

Association scheme
Transitive sets of permutations
Design system
Transformation semigroups and automata

The Association Scheme of S3

(23)

(13)

(12)

(132)

(123)

(1)

(23)

(13)

(12)

(132)

(123)

(1)
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The Association Scheme of S3

A0 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 ,

A1 =



0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

, A2 =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0


William J. Martin A Tale of Two Design Theories



Johnson Scheme
Symmetric Group

Association scheme
Transitive sets of permutations
Design system
Transformation semigroups and automata

Latin Squares

6 1 2 3 4 5

1 6 3 4 5 2

2 4 6 5 1 3

3 5 1 2 6 4

4 2 5 1 3 6

5 3 4 6 2 1

We will view this as a design consisting of six permutations

(123456), (26), (1542)(36), (13)(2465), (14)(35), (164325)

William J. Martin A Tale of Two Design Theories



Johnson Scheme
Symmetric Group

Association scheme
Transitive sets of permutations
Design system
Transformation semigroups and automata

Transitive Set of Permutations

What special property does this set of permutations enjoy?
It is transitive in the sense that, for every i and j there is a
(unique, in fact) permutation in the design that maps i to j .
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t-Transitive Permutation Groups

Every Cayley table for a group achieves this. But some groups act
on sets t-transitively for t > 1.
A group G acts t-transitively on set Ω if, for any distinct x1, . . . , xt
and any distinct y1, . . . yt from Ω, there exists a g ∈ G mapping
each xi to the corresponding yi .
In fact, if such g exists for all choices of the xi and yi , then the
number of such g is independent of the xi and yi .
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t-Homogeneous Groups

A group G acts t-homogeneously on set Ω if, for any distinct
x1, . . . , xt and any distinct y1, . . . yt from Ω, there exists a g ∈ G
mapping the set {x1, . . . , xt} to the set {y1, . . . yt}.
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Transitivity versus Homogeneity

Let’s always assume t < (n − 1)/2.

I Obvious: t-transitive implies t-homogeneous

I Obvious: t-transitive implies (t − 1)-transitive

I Not-so-Obvious: t-homogeneous implies (t − 1)-homogeneous

I Livingstone-Wagner Theorem (1965): The number of orbits of
G on (t − 1)-sets cannot exceed the number of orbits of G on
t-sets

I the t-homogeneous groups which are not t-transitive were
characterized by Kantor (1968,1972)
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λ-Transitive Permutation Groups

There is a natural common generalization of these two ideas.
Let λ = (λ1, . . . , λk) be a partition of n. A group G ≤ Sn is
λ-transitive if for every two ordered set partitions

P = (P1, . . . ,Pk), Q = (Q1, . . . ,Qk)

with |Pi | = |Qi | = λi for all i , there is a g ∈ G mapping each Pi

setwise to each Qi .
For hooks, this specializes to t-transitive groups; for λ = (n− t, t),
these specialize to t-homogeneous groups.
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λ-Transitive Sets of Permutations

But our latin square is not a group — it’s a set of permutations
which is λ-transitive for λ = (n − 1, 1).
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λ-Transitive Sets of Permutations

A partition P = (P1, . . . ,Pk) of [n] has shape λ = (λ1, . . . , λk) if
|Pi | = λi for all i . A set D ⊆ Sn is λ-transitive if there exists a
constant µ such that, for any set partitions P and Q of shape λ, D
contains exactly µ permutations mapping Pi to Qi (setwise) for
each 1 ≤ i ≤ k .
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Examples

The alternating group is (2, 1, . . . , 1)-transitive.

Other than symmetric and alternating groups, λ-transitive
subgroups of Sn all have λ1 ≥ n − 5.

But λ-transitive sets with |D| � n! exist for n sufficiently large
(here we fix λ2, . . . , λk). We don’t know much about small µ.
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Young Subgroups and their Cosets

A Young subgroup of Sn is a subgroup of the form

Y (P) = {σ ∈ Sn | σPi = Pi ∀i}

where P = (P1, . . . ,Pk) is any partition of [n].

Lemma: A subset D ⊆ Sn is a λ-transitive set of permutations if
and only if |D ∩ τY (P)| is constant for all cosets τY (P) of all
Young subgroups of shape λ.
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Incidence Matrix of Cosets of Young Subgroups

For λ ` n, the incidence matrix Wλ has rows indexed by Sn and
columns indexed by all cosets of all Young subgroups of shape λ
with entries

(Wλ)τ,C =

{
1 τ ∈ C ;

0 otherwise.
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The Eigenspaces of Sn (as an association scheme)

Like all (commutative) Bose-Mesner algebras, the Bose-Mesner of
the symmetric group is diagonalizable. There is one maximal
common eigenspace Vβ of the Aα for each partition β ` n; its
dimension is f 2

β where fβ is the number of standard Young tableaux
of shape β and can be computed, e.g., using the hook length
formula.
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Dominance Order

Now we use dominance order: for partitions λ, µ of n, write λE µ
if, for all j λ1 + · · ·+ λj ≤ µ1 + · · ·+ µj . (Set µj = 0 for larger j .)
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Dominance Order, n = 3, 4, 5
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Dominance Order, n = 6, 7
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Telescoping Sums of Eigenspaces
We know that

Vµ ⊆ colsp Wµ ⊆ ⊕λEµVλ

This gives us a third basis for the Bose-Mesner algebra of Sn: for
µ ` n, define Cµ = WµW>

µ . Then

Cµ =
∑
λ

%µ,λEλ

with %µ,λ = 0 unless λE µ.
It follows that D ⊆ Sn with characteristic vector x of length n! is
λ-transitive set of permutations if and only if

x>Eµ = 0

for all 1n 6= µE λ.
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Mapping Cosets of Young Subgroups to Their Shapes
So we have an order-preserving map

sh : P → E

which captures the “lower triangular” nature of the change-of-basis
matrix.
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λ-Homogeneous Groups

In a recent paper (J. Algebra 2016), André, Araújo and Cameron
generalized this idea a bit more. They studied λ-homogeneous
groups, allowing the g ∈ G to permute the various Pi :
Let λ = (λ1, . . . , λk) be a partition of n. A group G ≤ Sn is
λ-homogeneous if for every two unordered set partitions

P = (P1, . . . ,Pk), Q = (Q1, . . . ,Qk)

of shape λ, there is a g ∈ G such that

(gP1, . . . , gPk) = Q.
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λ-Homogeneous Groups

André et al. classify those permutation groups which are
λ-homogeneous but not λ-transitive.
Setting aside symmetric and alternating groups, and those
classified by Kantor, the shapes that arise are

(3, 3), (5, 5), (3, 2, 1, . . . , 1), (2, 2, 1, . . . , 1)

with n ∈ {9, 11, 12, 23, 24}.
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Transformation Semigroups

Denote by Tn the full transformation semigroup consisting of all
functions from [n] to itself.
For a function a : [n]→ [n] denote by ker(a) the partition of [n]
into preimages of the elements of the range of a.
Theorem (André et al.): For a ∈ Tn \Sn,

〈a,Sn〉 = {b ∈ Tn | (∃τ ∈ Sn)(τ ker(a) ⊆ ker(b))} .
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A Group Can Synchronize a Function

We say G ≤ Sn synchronizes a ∈ Tn \Sn if 〈a,G 〉 contains a
constant function. (This happens iff S = 〈a,G 〉 \ G is generated
by its idempotents. Many equivalent statements.)
Theorem (André et al.): Let a ∈ Tn \Sn and G ≤ Sn,

〈a,G 〉 \ G = 〈a,Sn〉 \Sn

iff

I G is k-homogeneous where a has image of size k, and

I G is λ-homogeneous where ker(a) has shape λ.
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Synchronizing Automata
Using these tools, André et al. gave the following characterization
of pairs (a,G ) for which

〈a,G 〉 \ G = 〈a,Sn〉 \Sn .

Let r be the rank (image size) of a.

Except for G = Sn,An and n ∈ {5, 6, 9}, we have

I r = 1 and G is transitive

I r > n/2, G is (n − r)-homogeneous and
λ = (n − r + 1, 1, . . . , 1)

I r = n − 2, G is 4-transitive and λ = (2, 2, 1, . . . , 1)

I r = n − 3, G is 5-transitive and λ = (3, 2, 1, . . . , 1)

I λ = (n − t, λ2, . . . , λr ), G is t-homogeneous (t < n/2) and
some extra conditions.
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Černý Conjecture

Conjecture (J. Černý, 1964): If a constant function exists, then it
is is a word of length at most (n − 1)2 in the generators of the
semigroup.
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The Solution to the Puzzle

1 2

34

5

g

g

g

g

h

h

h

ha

a

a

a

a

Shortest synchronizing word: a a h g a g a
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The End

Thank you.
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